Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1250847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711892

RESUMO

Frozen-thawed embryo transfer (FET) has been a viable alternative to fresh embryo transfer in recent years because of the improvement in vitrification methods. Laboratory-based studies indicate that complex molecular and morphological changes in endometrium during the window of implantation after exogenous hormones with controlled ovarian stimulation may alter the interaction between the embryo and endometrium, leading to a decreased implantation potential. Based on the results obtained from randomized controlled studies, increased pregnancy rates and better perinatal outcomes have been reported following FET. Compared to fresh embryo transfer, fewer preterm deliveries, and reduced incidence of ovarian hyperstimulation syndrome were found after FETs, yet there is a trend of increased pregnancy-related hypertensive diseases in women receiving FET. Despite the increased application of FET, the search for the most optimal priming protocol for the endometrium is still undergoing. Three available FET protocols have been proposed to prepare the endometrium: i) natural cycle (true natural cycle and modified natural cycle) ii) artificial cycle (AC) or hormone replacement treatment cycle iii) mild ovarian stimulation (mild-OS) cycle. Emerging evidence suggests that the optimal timing for FET using warmed blastocyst transfer is the LH surge+6 day, hCG administration+7 day, and the progesterone administration+6 day in the true natural cycle, modified natural cycle, and AC protocol, respectively. Although still controversial, better clinical pregnancy rates and live birth rates have been reported using the natural cycle (true natural cycle/modified natural cycle) compared with the AC protocol. Additionally, a higher early pregnancy loss rate and an increased incidence of gestational hypertension have been found in FETs using the AC protocol because of the lack of a corpus luteum. Although the common clinical practice is to employ luteal phase support (LPS) in natural cycles and mild-OS cycles for FET, the requirement for LPS in these protocols remains equivocal. Recent findings obtained from RCTs do not support the routine application of endometrial receptivity testing to optimize the timing of FET. More RCTs with rigorous methodology are needed to compare different protocols to prime the endometrium for FET, focusing not only on live birth rate, but also on maternal, obstetrical, and neonatal outcomes.


Assuntos
Endométrio , Lipopolissacarídeos , Recém-Nascido , Gravidez , Humanos , Feminino , Coeficiente de Natalidade , Corpo Lúteo , Transferência Embrionária
2.
Front Cell Dev Biol ; 11: 1200330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266451

RESUMO

Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.

3.
Front Endocrinol (Lausanne) ; 13: 1040503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452322

RESUMO

Secreted by the anterior pituitary gland, growth hormone (GH) is a peptide that plays a critical role in regulating cell growth, development, and metabolism in multiple targeted tissues. Studies have shown that GH and its functional receptor are also expressed in the female reproductive system, including the ovaries and uterus. The experimental data suggest putative roles for GH and insulin-like growth factor 1 (IGF-1, induced by GH activity) signaling in the direct control of multiple reproductive functions, including activation of primordial follicles, folliculogenesis, ovarian steroidogenesis, oocyte maturation, and embryo implantation. In addition, GH enhances granulosa cell responsiveness to gonadotropin by upregulating the expression of gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), indicating crosstalk between this ovarian regulator and the endocrine signaling system. Notably, natural gene mutation of GH and the age-related decline in GH levels may have a detrimental effect on female reproductive function, leading to several reproductive pathologies, such as diminished ovarian reserve, poor ovarian response during assisted reproductive technology (ART), and implantation failure. Association studies using clinical samples showed that mature GH peptide is present in human follicular fluid, and the concentration of GH in this fluid is positively correlated with oocyte quality and the subsequent embryo morphology and cleavage rate. Furthermore, the results obtained from animal experiments and human samples indicate that supplementation with GH in the in vitro culture system increases steroid hormone production, prevents cell apoptosis, and enhances oocyte maturation and embryo quality. The uterine endometrium is another GH target site, as GH promotes endometrial receptivity and pregnancy by facilitating the implantation process, and the targeted depletion of GH receptors in mice results in fewer uterine implantation sites. Although still controversial, the administration of GH during ovarian stimulation alleviates age-related decreases in ART efficiency, including the number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, pregnancy rate, and live birth rate, especially in patients with poor ovarian response and recurrent implantation failure.


Assuntos
Hormônio do Crescimento Humano , Infertilidade , Hormônios Adeno-Hipofisários , Gravidez , Humanos , Feminino , Camundongos , Animais , Hormônio do Crescimento , Fertilidade
4.
Cell Mol Life Sci ; 78(5): 2199-2212, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32910224

RESUMO

It is critical to specify a signal that directly drives the transition that occurs between cell states. However, such inferences are often confounded by indirect intercellular communications or secondary transcriptomic changes due to primary transcription factors. Although FGF is known for its importance during mesoderm-to-endothelium differentiation, its specific role and signaling mechanisms are still unclear due to the confounding factors referenced above. Here, we attempted to minimize the secondary artifacts by manipulating FGF and its downstream mediators with a short incubation time before sampling and protein-synthesis blockage in a low-density angioblastic/endothelial differentiation system. In less than 8 h, FGF started the conversion of KDRlow/PDGFRAlow nascent mesoderm into KDRhigh/PDGFRAlow angioblasts, and the priming by FGF was necessary to endow endothelial formation 72 h later. Further, the angioblastic conversion was mediated by the FGFR1/BRAF/MEK/ERK pathway in mesodermal cells. Finally, two transcription factors, ETV2 and LMO2, were the early direct functional responders downstream of the FGF pathway, and ETV2 alone was enough to complement the absence of FGF. FGF's selective role in mediating the first-step, angioblastic conversion from mesoderm-to-endothelium thus allows for refined control over acquiring and manipulating angioblasts. The noise-minimized differentiation/analysis platform presented here is well-suited for studies on the signaling switches of other mesodermal-lineage fates as well.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas com Domínio LIM/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
BMC Biol ; 15(1): 22, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327113

RESUMO

BACKGROUND: In addition to messenger RNA (mRNA), noncoding RNAs (ncRNAs) are essential components in cellular machineries for translation and splicing. Besides their housekeeping functions, ncRNAs are involved in cell type-specific regulation of translation, mRNA stability, genome structure, and accessibility. To have a comprehensive understanding of the identities and functions of different cell types, a method to comprehensively quantify both mRNA and ncRNA in a sensitive manner is highly desirable. METHODS: Here we tried to develop a system capable of concurrently profiling both mRNA and ncRNA by polyadenylating RNA in samples before reverse transcription. The sensitivity of the system was maximized by avoiding purification from cell lysis to amplified cDNA and by optimizing the buffer conditions. The single-tube amplification (STA) system was applied to single to 100 cells of 293T cells, human pluripotent stem cells (hPSCs) and their differentiated endothelial progenies to validate its quantitative power and sensitivity by qPCR and high-throughput sequencing. RESULTS: Using microRNA (miRNA) as an example, we showed that complementary DNA (cDNA) from ncRNAs could be amplified and specifically detected from a few cells within a single tube. The sensitivity of the system was maximized by avoiding purification from cell lysis to amplified cDNA and by optimizing the buffer conditions. With 100 human embryonic stem cells (hESCs) and their differentiated endothelial cells as input for high-throughput sequencing, the single-tube amplification (STA) system revealed both well-known and other miRNAs selectively enriched in each cell type. The selective enrichment of the miRNAs was further verified by qPCR with 293FT cells and a human induced pluripotent stem cell (hiPSC) line. In addition, the detection of other non-miRNA transcripts indicated that the STA target was not limited to miRNA, but extended to other ncRNAs and mRNAs as well. Finally, the STA system was capable of detecting miRNA and mRNA expression down to single cells, albeit with some loss of sensitivity and power. CONCLUSIONS: Overall, STA offered a simple and sensitive way to concurrently quantify both mRNA and ncRNA expression in low-cell-number samples for both qPCR and high-throughput sequencing.


Assuntos
Endotélio/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcriptoma/genética , Soluções Tampão , Contagem de Células , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Limite de Detecção , Magnésio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nucleotídeos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Poliadenilação/efeitos dos fármacos , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Reversa/efeitos dos fármacos , Análise de Célula Única , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...